aboutsummaryrefslogtreecommitdiffhomepage
path: root/std/Math/Real.bruijn
blob: 49f4a92d2f00bf366c25b928cadb1aec9f93f666 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# some ideas by u/DaVinci103
# MIT License, Copyright (c) 2024 Marvin Borner

:import std/Logic .
:import std/Combinator .
:import std/Pair .
:import std/Math/Rational Q
:import std/Math N

# a Real is just a Unary → Rational!

# converts a balanced ternary number to a real number
number→real [[Q.number→rational 1]] ⧗ Number → Real

:test (number→real (+5)) ((+5.0r))

# returns true if two real numbers are equal approximately
approx-eq? [[[Q.eq? (1 2) (0 2)]]] ⧗ Number → Real → Real → Boolean

# TODO: bigger value??
…≈?… approx-eq? (+100u)

# adds two real numbers
add φ Q.add ⧗ Real → Real → Real

…+… add

:test ((+1.0r) + (+0.0r) ≈? (+1.0r)) (true)
:test ((+0.0r) + (-1.0r) ≈? (-1.0r)) (true)

# subtracts two real numbers
sub φ Q.sub ⧗ Real → Real → Real

…-… sub

:test ((+1.0r) - (+0.5r) ≈? (+0.5r)) (true)
:test ((+0.0r) - (-1.0r) ≈? (+1.0r)) (true)

# multiplies two real numbers
mul φ Q.mul ⧗ Real → Real → Real

…⋅… mul

:test ((+5.0r) ⋅ (+5.0r) ≈? (+25.0r)) (true)
:test ((+1.8r) ⋅ (+1.2r) ≈? (+2.16r)) (true)

# divides two real numbers
div φ Q.div ⧗ Real → Real → Real

…/… div

:test ((+8.0r) / (+4.0r) ≈? (+2.0r)) (true)
:test ((+18.0r) / (+12.0r) ≈? (+1.5r)) (true)

# negates a real number
negate b Q.negate ⧗ Real → Real

-‣ negate

:test (-(+0.0r) ≈? (+0.0r)) (true)
:test (-(+4.2r) ≈? (-4.2r)) (true)
:test (-(-4.2r) ≈? (+4.2r)) (true)

# inverts a real number
invert b Q.invert ⧗ Real → Real

~‣ invert

:test (~(+0.5r) ≈? (+2.0r)) (true)
:test (~(-0.5r) ≈? (-2.0r)) (true)

# finds smallest equivalent representation of a real number
compress b Q.compress ⧗ Real → Real

%‣ compress

:test (%[(+4) : (+1)] ≈? (+2.0r)) (true)
:test (%[(+4) : (+7)] ≈? (+0.5r)) (true)

# increments a real number
inc add (+1.0r) ⧗ Real → Real

++‣ inc

# decrements a real number
dec \sub (+1.0r) ⧗ Real → Real

--‣ dec

# ---

:import std/List L

# ∑(1/n^2)
# converges to 1.6449...
unary-1/n² [0 &[[(Q.add 1 op) : N.++0]] start [[0]]] ⧗ Real
	op (+1) : N.--(N.mul 0 0)
	start (+0.0f) : (+1)

# e^x using Taylor expansion: ∑(x^n/n!) = e^x
unary-exp [[0 &[[[[[[[2 1 0 (Q.add 4 (1 : N.--0)) N.++3]] pow fac]]]]] start [[[[1]]]]]] ⧗ Number → Real
	pow N.mul 6 4
	fac N.mul 1 3
	start [0 (+1) (+1) (+1.0f) (+1)]

# equivalent to unary-exp but with ternary index using infinite list iteration
exp [[L.index 0 (L.iterate &[[[[op]]]] start) [[[[1]]]] 0]] ⧗ Real → Real
	start [0 (+1.0r) (+1.0r) (+1.0r) (+1)]
	op [[[2 1 0 (4 + (1 / 0)) N.++3]] pow fac]
		pow 6 ⋅ 4
		fac (number→real 1) ⋅ 3

# power function: real^number
pow-n [L.…!!… (L.iterate (mul 0) (+1.0r))] ⧗ Real → Number → Real

# e^x using infinite limit: lim (1+x/n)^n, n to ∞
lim-exp [[pow-n [(N.add 2 1) : N.--1] 0]] ⧗ Number → Real

# log_e using Taylor expansion
ln [[[L.index 1 (L.iterate &[[[op]]] start)] (--1 / ++1 0) [[[1]]]]] ⧗ Real → Real
	start [0 1 (+0.0f) (+0)]
	op [0 pow (Q.add 2 go) N.++1]
		pow Q.mul 3 (Q.pow-n 4 (+2))
		go Q.mul ((+2) : (N.mul (+2) 1)) 3

derive [[[[((3 (0 + 1)) - (3 0)) / 1]] ((+1.0r) / 0) 0]] ⧗ (Real → Real) → (Real → Real)

# power function: real^real
pow [[exp (0 ⋅ (ln 1))]] ⧗ Real → Real → Real

…**… pow