blob: bd542325201c80b6326964c890f4f63374c4d776 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
# MIT License, Copyright (c) 2022 Marvin Borner
# According to works of T.Æ. Mogensen
:import std/Combinator .
:import std/Pair .
:import std/Logic .
# negative trit indicating coeffecient of (-1)
trit-neg [[[2]]]
# returns whether a trit is negative
trit-neg? [0 T F F]
# positive trit indicating coeffecient of (+1)
trit-pos [[[1]]]
# returns whether a trit is positive
trit-pos? [0 F T F]
# zero trit indicating coeffecient of 0
trit-zero [[[0]]]
# returns whether a trit is zero
trit-zero? [0 F F T]
:test (trit-neg? trit-neg) (T)
:test (trit-neg? trit-pos) (F)
:test (trit-neg? trit-zero) (F)
:test (trit-pos? trit-neg) (F)
:test (trit-pos? trit-pos) (T)
:test (trit-pos? trit-zero) (F)
:test (trit-zero? trit-neg) (F)
:test (trit-zero? trit-pos) (F)
:test (trit-zero? trit-zero) (T)
# shifts a negative trit into a balanced ternary number
up-neg [[[[[2 (4 3 2 1 0)]]]]]
^<( up-neg
:test (^<(+0)) ((-1))
:test (^<(-1)) ((-4))
:test (^<(+42)) ((+125))
# shifts a positive trit into a balanced ternary number
up-pos [[[[[1 (4 3 2 1 0)]]]]]
^>( up-pos
:test (^>(+0)) ((+1))
:test (^>(-1)) ((-2))
:test (^>(+42)) ((+127))
# shifts a zero trit into a balanced ternary number
up-zero [[[[[0 (4 3 2 1 0)]]]]]
^=( up-zero
:test (^=(+0)) ([[[[0 3]]]])
:test (^=(+1)) ((+3))
:test (^=(+42)) ((+126))
# shifts a specified trit into a balanced ternary number
up [[[[[[5 2 1 0 (4 3 2 1 0)]]]]]]
:test (up trit-neg (+42)) (^<(+42))
:test (up trit-pos (+42)) (^>(+42))
:test (up trit-zero (+42)) (^=(+42))
# shifts the least significant trit out - basically div by 3
down [snd (0 z neg pos zero)]
z pair (+0) (+0)
neg [0 [[pair (^<1) 1]]]
pos [0 [[pair (^>1) 1]]]
zero [0 [[pair (^=1) 1]]]
# negates a balanced ternary number
negate [[[[[4 3 1 2 0]]]]]
-( negate
:test (-(+0)) ((+0))
:test (-(-1)) ((+1))
:test (-(+42)) ((-42))
# converts a balanced ternary number to a list of trits
list! [0 z neg pos zero]
z F
neg [[pair trit-neg 1]]
pos [[pair trit-pos 1]]
zero [[pair trit-zero 1]]
# TODO: Tests!
# strips leading 0s from balanced ternary number
strip [fst (0 z neg pos zero)]
z pair (+0) T
neg [0 [[pair (^<1) F]]]
pos [0 [[pair (^>1) F]]]
zero [0 [[pair (0 (+0) (^=1)) 0]]]
~( strip
:test (~[[[[0 3]]]]) ((+0))
:test (~[[[[2 (0 (0 (0 (0 3))))]]]]) ((-1))
:test (~(+42)) ((+42))
# extracts least significant trit from balanced ternary numbers
lst [0 trit-zero [trit-neg] [trit-pos] [trit-zero]]
:test (lst (+0)) (trit-zero)
:test (lst (-1)) (trit-neg)
:test (lst (+1)) (trit-pos)
:test (lst (+42)) (trit-zero)
# extracts most significant trit from balanced ternary numbers
# TODO: Find a more elegant way to do this
# mst [fix (List.last (list! (strip 0)))]
# fix [if (or (trit-neg? 0) (or (trit-pos? 0) (trit-zero? 0))) 0 [[0]]]
# TODO: Fix list import loop
mst [trit-zero]
:test (mst (+0)) (trit-zero)
:test (mst (-1)) (trit-neg)
:test (mst (+1)) (trit-pos)
:test (mst (+42)) (trit-pos)
# returns whether balanced ternary number is negative
negative? [trit-neg? (mst 0)]
<?( negative?
:test (<?(+0)) (F)
:test (<?(-1)) (T)
:test (<?(+1)) (F)
:test (<?(+42)) (F)
# returns whether balanced ternary number is positive
positive? [trit-pos? (mst 0)]
>?( positive?
:test (>?(+0)) (F)
:test (>?(-1)) (F)
:test (>?(+1)) (T)
:test (>?(+42)) (T)
# checks whether balanced ternary number is zero
zero? [0 T [F] [F] I]
=?( zero?
:test (=?(+0)) (T)
:test (=?(-1)) (F)
:test (=?(+1)) (F)
:test (=?(+42)) (F)
# converts the normal balanced ternary representation into abstract
# -> the abstract representation is used in add/sub/mul
abstract! [0 z neg pos zero]
z (+0)
neg [[[[[2 4]]]]]
pos [[[[[1 4]]]]]
zero [[[[[0 4]]]]]
:test (abstract! (-3)) ([[[[0 [[[[2 [[[[3]]]]]]]]]]]])
:test (abstract! (+0)) ([[[[3]]]])
:test (abstract! (+3)) ([[[[0 [[[[1 [[[[3]]]]]]]]]]]])
# converts the abstracted balanced ternary representation back to normal
# using ω to solve recursion
normal! ω rec
rec [[0 (+0) [^<([3 3 0] 0)] [^>([3 3 0] 0)] [^=([3 3 0] 0)]]]
:test (normal! [[[[3]]]]) ((+0))
:test (normal! (abstract! (+42))) ((+42))
:test (normal! (abstract! (-42))) ((-42))
# checks whether two balanced ternary numbers are equal
# -> ignores leading 0s!
eq? [[abs 1 (abstract! 0)]]
z [zero? (normal! 0)]
neg [[0 F [2 0] [F] [F]]]
pos [[0 F [F] [2 0] [F]]]
zero [[0 (1 0) [F] [F] [2 0]]]
abs [0 z neg pos zero]
(=?) eq?
:test ((-42) =? (-42)) (T)
:test ((-1) =? (-1)) (T)
:test ((-1) =? (+0)) (F)
:test ((+0) =? (+0)) (T)
:test ((+1) =? (+0)) (F)
:test ((+1) =? (+1)) (T)
:test ((+42) =? (+42)) (T)
:test ([[[[(1 (0 (0 (0 (0 3)))))]]]] =? (+1)) (T)
# I believe Mogensen's Paper has an error in its inc/dec/add/mul/eq definitions.
# They use 3 instead of 2 abstractions in the functions, also we use switched
# +/0 in comparison to their implementation, yet the order of neg/pos/zero is
# the same. Something's weird.
# adds (+1) to a balanced ternary number (can introduce leading 0s)
inc [snd (0 z neg pos zero)]
z pair (+0) (+1)
neg [0 [[pair (^<1) (^=1)]]]
zero [0 [[pair (^=1) (^>1)]]]
pos [0 [[pair (^>1) (^<0)]]]
++( inc
# adds (+1) to a balanced ternary number and strips leading 0s
ssinc [~(++0)]
:test ((++(-42)) =? (-41)) (T)
:test ((++(-1)) =? (+0)) (T)
:test ((++(+0)) =? (+1)) (T)
:test ((++(++(++(++(++(+0)))))) =? (+5)) (T)
:test ((++(+42)) =? (+43)) (T)
# subs (+1) from a balanced ternary number (can introduce leading 0s)
dec [snd (0 dec-z dec-neg dec-pos dec-zero)]
dec-z pair (+0) (-1)
dec-neg [0 [[pair (^<1) (^>0)]]]
dec-zero [0 [[pair (^=1) (^<1)]]]
dec-pos [0 [[pair (^>1) (^=1)]]]
--( dec
# subs (+1) from a balanced ternary number and strips leading 0s
ssub [~(--0)]
:test ((--(-42)) =? (-43)) (T)
:test ((--(+0)) =? (-1)) (T)
:test ((--(--(--(--(--(+5)))))) =? (+0)) (T)
:test ((--(+1)) =? (+0)) (T)
:test ((--(+42)) =? (+41)) (T)
# adds two balanced ternary numbers (can introduce leading 0s)
add [[abs 1 (abstract! 0)]]
c [[1 0 trit-zero]]
b-neg2 [1 (^=(3 0 trit-neg)) (^<(3 0 trit-zero)) (^>(3 0 trit-neg))]
b-neg [1 (^>(3 0 trit-neg)) (^=(3 0 trit-zero)) (^<(3 0 trit-zero))]
b-zero [up 1 (3 0 trit-zero)]
b-pos [1 (^=(3 0 trit-zero)) (^<(3 0 trit-pos)) (^>(3 0 trit-zero))]
b-pos2 [1 (^>(3 0 trit-zero)) (^=(3 0 trit-pos)) (^<(3 0 trit-pos))]
a-neg [[[1 (b-neg 1) b-neg2 b-zero b-neg]]]
a-pos [[[1 (b-pos 1) b-zero b-pos2 b-pos]]]
a-zero [[[1 (b-zero 1) b-neg b-pos b-zero]]]
z [[0 (--(normal! 1)) (++(normal! 1)) (normal! 1)]]
abs [c (0 z a-neg a-pos a-zero)]
(+) add
# adds two balanced ternary numbers and strips leading 0s
sadd [[~(1 + 0)]]
:test (((-42) + (-1)) =? (-43)) (T)
:test (((-5) + (+6)) =? (+1)) (T)
:test (((-1) + (+0)) =? (-1)) (T)
:test (((+0) + (+0)) =? (+0)) (T)
:test (((+1) + (+2)) =? (+3)) (T)
:test (((+42) + (+1)) =? (+43)) (T)
# subs two balanced ternary numbers (can introduce leading 0s)
sub [[1 + -0]]
(-) sub
# subs two balanced ternary numbers and strips leading 0s
ssub [[~(1 - 0)]]
:test (((-42) - (-1)) =? (-41)) (T)
:test (((-5) - (+6)) =? (-11)) (T)
:test (((-1) - (+0)) =? (-1)) (T)
:test (((+0) - (+0)) =? (+0)) (T)
:test (((+1) - (+2)) =? (-1)) (T)
:test (((+42) - (+1)) =? (+41)) (T)
# returns whether number is greater than other number
gre? [[negative? (sub 0 1)]]
(>?) gre?
# returns whether number is less than or equal to other number
leq? [[not (gre? 1 0)]]
(<=?) leq?
# muls two balanced ternary numbers (can introduce leading 0s)
mul [[1 (+0) neg pos zero]]
neg [(^=0) - 1]
pos [(^=0) + 1]
zero [^=0]
(*) mul
smul [[strip (mul 1 0)]]
:test (((+42) * (+0)) =? (+0)) (T)
:test (((-1) * (+42)) =? (-42)) (T)
:test (((+3) * (+11)) =? (+33)) (T)
:test (((+42) * (-4)) =? (-168)) (T)
|