1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
-- MIT License, Copyright (c) 2024 Marvin Borner
module Language.Mili.Reducer
( nf
) where
import Data.Mili ( Nat(..)
, Term(..)
, shift
)
data Singleton = TermTag Term | RecTag Term Term Term Term
deriving Show
-- TODO: There will only ever be one substitution, so don't iterate the entire tree!
-- Otherwise replace with fold
subst :: Int -> Term -> Term -> Term
subst l (Abs d m) s = Abs d $ subst l m s
subst l (App a b) s = App (subst l a s) (subst l b s)
subst l (Lvl i) s | l == i = s
| otherwise = (Lvl i)
subst _ (Num Z ) _ = Num Z
subst l (Num (S m)) s = Num $ S $ subst l m s
subst l (Rec (t1, t2) u v w) s =
Rec (subst l t1 s, t2) (subst l u s) (subst l v s) (subst l w s)
machine :: Term -> [Singleton] -> (Term, [Singleton])
machine (App a b) s = (a, TermTag b : s)
machine (Abs l u) (TermTag t : s) = (shift (-1) (subst l u t), s)
machine (Rec (t1, t2) u v w) s = (t1, RecTag (Num t2) u v w : s)
machine (Num Z) (RecTag _ u _ _ : s) = (u, s)
machine (Num (S t1)) ((RecTag t2 u v w) : s) =
(v, RecTag (App (App w t1) t2) u v w : s)
machine t s = error $ show t <> show s
runMachine :: [Singleton] -> Term -> Term
runMachine s t = case machine t s of
(t', []) -> t'
(t', s') -> runMachine s' t'
-- | Reduce term to normal form
nf :: Term -> Term
nf = runMachine []
|