diff options
Diffstat (limited to 'public/bower_components/jvectormap/src/proj.js')
-rw-r--r-- | public/bower_components/jvectormap/src/proj.js | 181 |
1 files changed, 181 insertions, 0 deletions
diff --git a/public/bower_components/jvectormap/src/proj.js b/public/bower_components/jvectormap/src/proj.js new file mode 100644 index 0000000..f9c3913 --- /dev/null +++ b/public/bower_components/jvectormap/src/proj.js @@ -0,0 +1,181 @@ +/** + * Contains methods for transforming point on sphere to + * Cartesian coordinates using various projections. + * @class + */ +jvm.Proj = { + degRad: 180 / Math.PI, + radDeg: Math.PI / 180, + radius: 6381372, + + sgn: function(n){ + if (n > 0) { + return 1; + } else if (n < 0) { + return -1; + } else { + return n; + } + }, + + /** + * Converts point on sphere to the Cartesian coordinates using Miller projection + * @param {Number} lat Latitude in degrees + * @param {Number} lng Longitude in degrees + * @param {Number} c Central meridian in degrees + */ + mill: function(lat, lng, c){ + return { + x: this.radius * (lng - c) * this.radDeg, + y: - this.radius * Math.log(Math.tan((45 + 0.4 * lat) * this.radDeg)) / 0.8 + }; + }, + + /** + * Inverse function of mill() + * Converts Cartesian coordinates to point on sphere using Miller projection + * @param {Number} x X of point in Cartesian system as integer + * @param {Number} y Y of point in Cartesian system as integer + * @param {Number} c Central meridian in degrees + */ + mill_inv: function(x, y, c){ + return { + lat: (2.5 * Math.atan(Math.exp(0.8 * y / this.radius)) - 5 * Math.PI / 8) * this.degRad, + lng: (c * this.radDeg + x / this.radius) * this.degRad + }; + }, + + /** + * Converts point on sphere to the Cartesian coordinates using Mercator projection + * @param {Number} lat Latitude in degrees + * @param {Number} lng Longitude in degrees + * @param {Number} c Central meridian in degrees + */ + merc: function(lat, lng, c){ + return { + x: this.radius * (lng - c) * this.radDeg, + y: - this.radius * Math.log(Math.tan(Math.PI / 4 + lat * Math.PI / 360)) + }; + }, + + /** + * Inverse function of merc() + * Converts Cartesian coordinates to point on sphere using Mercator projection + * @param {Number} x X of point in Cartesian system as integer + * @param {Number} y Y of point in Cartesian system as integer + * @param {Number} c Central meridian in degrees + */ + merc_inv: function(x, y, c){ + return { + lat: (2 * Math.atan(Math.exp(y / this.radius)) - Math.PI / 2) * this.degRad, + lng: (c * this.radDeg + x / this.radius) * this.degRad + }; + }, + + /** + * Converts point on sphere to the Cartesian coordinates using Albers Equal-Area Conic + * projection + * @see <a href="http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html">Albers Equal-Area Conic projection</a> + * @param {Number} lat Latitude in degrees + * @param {Number} lng Longitude in degrees + * @param {Number} c Central meridian in degrees + */ + aea: function(lat, lng, c){ + var fi0 = 0, + lambda0 = c * this.radDeg, + fi1 = 29.5 * this.radDeg, + fi2 = 45.5 * this.radDeg, + fi = lat * this.radDeg, + lambda = lng * this.radDeg, + n = (Math.sin(fi1)+Math.sin(fi2)) / 2, + C = Math.cos(fi1)*Math.cos(fi1)+2*n*Math.sin(fi1), + theta = n*(lambda-lambda0), + ro = Math.sqrt(C-2*n*Math.sin(fi))/n, + ro0 = Math.sqrt(C-2*n*Math.sin(fi0))/n; + + return { + x: ro * Math.sin(theta) * this.radius, + y: - (ro0 - ro * Math.cos(theta)) * this.radius + }; + }, + + /** + * Converts Cartesian coordinates to the point on sphere using Albers Equal-Area Conic + * projection + * @see <a href="http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html">Albers Equal-Area Conic projection</a> + * @param {Number} x X of point in Cartesian system as integer + * @param {Number} y Y of point in Cartesian system as integer + * @param {Number} c Central meridian in degrees + */ + aea_inv: function(xCoord, yCoord, c){ + var x = xCoord / this.radius, + y = yCoord / this.radius, + fi0 = 0, + lambda0 = c * this.radDeg, + fi1 = 29.5 * this.radDeg, + fi2 = 45.5 * this.radDeg, + n = (Math.sin(fi1)+Math.sin(fi2)) / 2, + C = Math.cos(fi1)*Math.cos(fi1)+2*n*Math.sin(fi1), + ro0 = Math.sqrt(C-2*n*Math.sin(fi0))/n, + ro = Math.sqrt(x*x+(ro0-y)*(ro0-y)), + theta = Math.atan( x / (ro0 - y) ); + + return { + lat: (Math.asin((C - ro * ro * n * n) / (2 * n))) * this.degRad, + lng: (lambda0 + theta / n) * this.degRad + }; + }, + + /** + * Converts point on sphere to the Cartesian coordinates using Lambert conformal + * conic projection + * @see <a href="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert Conformal Conic Projection</a> + * @param {Number} lat Latitude in degrees + * @param {Number} lng Longitude in degrees + * @param {Number} c Central meridian in degrees + */ + lcc: function(lat, lng, c){ + var fi0 = 0, + lambda0 = c * this.radDeg, + lambda = lng * this.radDeg, + fi1 = 33 * this.radDeg, + fi2 = 45 * this.radDeg, + fi = lat * this.radDeg, + n = Math.log( Math.cos(fi1) * (1 / Math.cos(fi2)) ) / Math.log( Math.tan( Math.PI / 4 + fi2 / 2) * (1 / Math.tan( Math.PI / 4 + fi1 / 2) ) ), + F = ( Math.cos(fi1) * Math.pow( Math.tan( Math.PI / 4 + fi1 / 2 ), n ) ) / n, + ro = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi / 2 ), n ), + ro0 = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi0 / 2 ), n ); + + return { + x: ro * Math.sin( n * (lambda - lambda0) ) * this.radius, + y: - (ro0 - ro * Math.cos( n * (lambda - lambda0) ) ) * this.radius + }; + }, + + /** + * Converts Cartesian coordinates to the point on sphere using Lambert conformal conic + * projection + * @see <a href="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert Conformal Conic Projection</a> + * @param {Number} x X of point in Cartesian system as integer + * @param {Number} y Y of point in Cartesian system as integer + * @param {Number} c Central meridian in degrees + */ + lcc_inv: function(xCoord, yCoord, c){ + var x = xCoord / this.radius, + y = yCoord / this.radius, + fi0 = 0, + lambda0 = c * this.radDeg, + fi1 = 33 * this.radDeg, + fi2 = 45 * this.radDeg, + n = Math.log( Math.cos(fi1) * (1 / Math.cos(fi2)) ) / Math.log( Math.tan( Math.PI / 4 + fi2 / 2) * (1 / Math.tan( Math.PI / 4 + fi1 / 2) ) ), + F = ( Math.cos(fi1) * Math.pow( Math.tan( Math.PI / 4 + fi1 / 2 ), n ) ) / n, + ro0 = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi0 / 2 ), n ), + ro = this.sgn(n) * Math.sqrt(x*x+(ro0-y)*(ro0-y)), + theta = Math.atan( x / (ro0 - y) ); + + return { + lat: (2 * Math.atan(Math.pow(F/ro, 1/n)) - Math.PI / 2) * this.degRad, + lng: (lambda0 + theta / n) * this.degRad + }; + } +};
\ No newline at end of file |