diff options
Diffstat (limited to 'swr2_asr/utils')
-rw-r--r-- | swr2_asr/utils/__init__.py | 0 | ||||
-rw-r--r-- | swr2_asr/utils/data.py | 371 | ||||
-rw-r--r-- | swr2_asr/utils/decoder.py | 26 | ||||
-rw-r--r-- | swr2_asr/utils/tokenizer.py | 126 | ||||
-rw-r--r-- | swr2_asr/utils/visualization.py | 22 |
5 files changed, 545 insertions, 0 deletions
diff --git a/swr2_asr/utils/__init__.py b/swr2_asr/utils/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/swr2_asr/utils/__init__.py diff --git a/swr2_asr/utils/data.py b/swr2_asr/utils/data.py new file mode 100644 index 0000000..93f4a9a --- /dev/null +++ b/swr2_asr/utils/data.py @@ -0,0 +1,371 @@ +"""Class containing utils for the ASR system.""" +import os +from enum import Enum +from typing import TypedDict + +import numpy as np +import torch +import torchaudio +from torch import Tensor, nn +from torch.utils.data import Dataset +from torchaudio.datasets.utils import _extract_tar + +from swr2_asr.utils.tokenizer import CharTokenizer + + +class DataProcessing: + """Data processing class for the dataloader""" + + def __init__(self, data_type: str, tokenizer: CharTokenizer): + self.data_type = data_type + self.tokenizer = tokenizer + + if data_type == "train": + self.audio_transform = torch.nn.Sequential( + torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_mels=128), + torchaudio.transforms.FrequencyMasking(freq_mask_param=30), + torchaudio.transforms.TimeMasking(time_mask_param=100), + ) + elif data_type == "valid": + self.audio_transform = torchaudio.transforms.MelSpectrogram() + + def __call__(self, data) -> tuple[Tensor, Tensor, list, list]: + spectrograms = [] + labels = [] + input_lengths = [] + label_lengths = [] + for waveform, _, utterance, _, _, _ in data: + spec = self.audio_transform(waveform).squeeze(0).transpose(0, 1) + spectrograms.append(spec) + label = torch.Tensor(self.tokenizer.encode(utterance.lower())) + labels.append(label) + input_lengths.append(spec.shape[0] // 2) + label_lengths.append(len(label)) + + spectrograms = ( + nn.utils.rnn.pad_sequence(spectrograms, batch_first=True).unsqueeze(1).transpose(2, 3) + ) + labels = nn.utils.rnn.pad_sequence(labels, batch_first=True) + + return spectrograms, labels, input_lengths, label_lengths + + +# create enum specifiying dataset splits +class MLSSplit(str, Enum): + """Enum specifying dataset as they are defined in the + Multilingual LibriSpeech dataset""" + + TRAIN = "train" + TEST = "test" + DEV = "dev" + + +class Split(str, Enum): + """Extending the MLSSplit class to allow for a custom validation split""" + + TRAIN = "train" + VALID = "valid" + TEST = "test" + DEV = "dev" + + +def split_to_mls_split(split_name: Split) -> MLSSplit: + """Converts the custom split to a MLSSplit""" + if split_name == Split.VALID: + return MLSSplit.TRAIN + return split_name # type: ignore + + +class Sample(TypedDict): + """Type for a sample in the dataset""" + + waveform: torch.Tensor + spectrogram: torch.Tensor + input_length: int + utterance: torch.Tensor + utterance_length: int + sample_rate: int + speaker_id: str + book_id: str + chapter_id: str + + +class MLSDataset(Dataset): + """Custom Dataset for reading Multilingual LibriSpeech + + Attributes: + dataset_path (str): + path to the dataset + language (str): + language of the dataset + split (Split): + split of the dataset + mls_split (MLSSplit): + split of the dataset as defined in the Multilingual LibriSpeech dataset + dataset_lookup (list): + list of dicts containing the speakerid, bookid, chapterid and utterance + + directory structure: + <dataset_path> + ├── <language> + │ ├── train + │ │ ├── transcripts.txt + │ │ └── audio + │ │ └── <speakerid> + │ │ └── <bookid> + │ │ └── <speakerid>_<bookid>_<chapterid>.opus / .flac + + each line in transcripts.txt has the following format: + <speakerid>_<bookid>_<chapterid> <utterance> + """ + + def __init__( + self, + dataset_path: str, + language: str, + split: Split, + limited: bool, + download: bool, + size: float = 0.2, + ): + """Initializes the dataset""" + self.dataset_path = dataset_path + self.language = language + self.file_ext = ".opus" if "opus" in language else ".flac" + self.mls_split: MLSSplit = split_to_mls_split(split) # split path on disk + self.split: Split = split # split used internally + + self.dataset_lookup = [] + + self._handle_download_dataset(download) + self._validate_local_directory() + if limited and (split == Split.TRAIN or split == Split.VALID): + self.initialize_limited() + else: + self.initialize() + + self.dataset_lookup = self.dataset_lookup[: int(len(self.dataset_lookup) * size)] + + def initialize_limited(self) -> None: + """Initializes the limited supervision dataset""" + # get file handles + # get file paths + # get transcripts + # create train or validation split + + handles = set() + + train_root_path = os.path.join(self.dataset_path, self.language, "train") + + # get file handles for 9h + with open( + os.path.join(train_root_path, "limited_supervision", "9hr", "handles.txt"), + "r", + encoding="utf-8", + ) as file: + for line in file: + handles.add(line.strip()) + + # get file handles for 1h splits + for handle_path in os.listdir(os.path.join(train_root_path, "limited_supervision", "1hr")): + if handle_path not in range(0, 6): + continue + with open( + os.path.join( + train_root_path, "limited_supervision", "1hr", handle_path, "handles.txt" + ), + "r", + encoding="utf-8", + ) as file: + for line in file: + handles.add(line.strip()) + + # get file paths for handles + file_paths = [] + for handle in handles: + file_paths.append( + os.path.join( + train_root_path, + "audio", + handle.split("_")[0], + handle.split("_")[1], + handle + self.file_ext, + ) + ) + + # get transcripts for handles + transcripts = [] + with open(os.path.join(train_root_path, "transcripts.txt"), "r", encoding="utf-8") as file: + for line in file: + if line.split("\t")[0] in handles: + transcripts.append(line.strip()) + + # create train or valid split randomly with seed 42 + if self.split == Split.TRAIN: + np.random.seed(42) + indices = np.random.choice(len(file_paths), int(len(file_paths) * 0.8)) + file_paths = [file_paths[i] for i in indices] + transcripts = [transcripts[i] for i in indices] + elif self.split == Split.VALID: + np.random.seed(42) + indices = np.random.choice(len(file_paths), int(len(file_paths) * 0.2)) + file_paths = [file_paths[i] for i in indices] + transcripts = [transcripts[i] for i in indices] + + # create dataset lookup + self.dataset_lookup = [ + { + "speakerid": path.split("/")[-3], + "bookid": path.split("/")[-2], + "chapterid": path.split("/")[-1].split("_")[2].split(".")[0], + "utterance": utterance.split("\t")[1], + } + for path, utterance in zip(file_paths, transcripts, strict=False) + ] + + def initialize(self) -> None: + """Initializes the entire dataset + + Reads the transcripts.txt file and creates a lookup table + """ + transcripts_path = os.path.join( + self.dataset_path, self.language, self.mls_split, "transcripts.txt" + ) + + with open(transcripts_path, "r", encoding="utf-8") as script_file: + # read all lines in transcripts.txt + transcripts = script_file.readlines() + # split each line into (<speakerid>_<bookid>_<chapterid>, <utterance>) + transcripts = [line.strip().split("\t", 1) for line in transcripts] # type: ignore + utterances = [utterance.strip() for _, utterance in transcripts] # type: ignore + identifier = [identifier.strip() for identifier, _ in transcripts] # type: ignore + identifier = [path.split("_") for path in identifier] + + if self.split == Split.VALID: + np.random.seed(42) + indices = np.random.choice(len(utterances), int(len(utterances) * 0.2)) + utterances = [utterances[i] for i in indices] + identifier = [identifier[i] for i in indices] + elif self.split == Split.TRAIN: + np.random.seed(42) + indices = np.random.choice(len(utterances), int(len(utterances) * 0.8)) + utterances = [utterances[i] for i in indices] + identifier = [identifier[i] for i in indices] + + self.dataset_lookup = [ + { + "speakerid": path[0], + "bookid": path[1], + "chapterid": path[2], + "utterance": utterance, + } + for path, utterance in zip(identifier, utterances, strict=False) + ] + + def _handle_download_dataset(self, download: bool) -> None: + """Download the dataset""" + if not download: + print("Download flag not set, skipping download") + return + # zip exists: + if os.path.isfile(os.path.join(self.dataset_path, self.language) + ".tar.gz") and download: + print(f"Found dataset at {self.dataset_path}. Skipping download") + # path exists: + elif os.path.isdir(os.path.join(self.dataset_path, self.language)) and download: + return + else: + os.makedirs(self.dataset_path, exist_ok=True) + url = f"https://dl.fbaipublicfiles.com/mls/{self.language}.tar.gz" + + torch.hub.download_url_to_file( + url, os.path.join(self.dataset_path, self.language) + ".tar.gz" + ) + + # unzip the dataset + if not os.path.isdir(os.path.join(self.dataset_path, self.language)): + print( + f"Unzipping the dataset at \ + {os.path.join(self.dataset_path, self.language) + '.tar.gz'}" + ) + _extract_tar(os.path.join(self.dataset_path, self.language) + ".tar.gz", overwrite=True) + else: + print("Dataset is already unzipped, validating it now") + return + + def _validate_local_directory(self): + # check if dataset_path exists + if not os.path.exists(self.dataset_path): + raise ValueError("Dataset path does not exist") + if not os.path.exists(os.path.join(self.dataset_path, self.language)): + raise ValueError("Language not downloaded!") + if not os.path.exists(os.path.join(self.dataset_path, self.language, self.mls_split)): + raise ValueError("Split not found in dataset") + + def __len__(self): + """Returns the length of the dataset""" + return len(self.dataset_lookup) + + def __getitem__(self, idx: int) -> tuple[Tensor, int, str, int, int, int]: + """One sample + + Returns: + Tuple of the following items; + + Tensor: + Waveform + int: + Sample rate + str: + Transcript + int: + Speaker ID + int: + Chapter ID + int: + Utterance ID + """ + # get the utterance + dataset_lookup_entry = self.dataset_lookup[idx] + + utterance = dataset_lookup_entry["utterance"] + + # get the audio file + audio_path = os.path.join( + self.dataset_path, + self.language, + self.mls_split, + "audio", + self.dataset_lookup[idx]["speakerid"], + self.dataset_lookup[idx]["bookid"], + "_".join( + [ + self.dataset_lookup[idx]["speakerid"], + self.dataset_lookup[idx]["bookid"], + self.dataset_lookup[idx]["chapterid"], + ] + ) + + self.file_ext, + ) + + waveform, sample_rate = torchaudio.load(audio_path) # pylint: disable=no-member + + # resample if necessary + if sample_rate != 16000: + resampler = torchaudio.transforms.Resample(sample_rate, 16000) + waveform = resampler(waveform) + + return ( + waveform, + sample_rate, + utterance, + dataset_lookup_entry["speakerid"], + dataset_lookup_entry["chapterid"], + idx, + ) # type: ignore + + +if __name__ == "__main__": + DATASET_PATH = "/Volumes/pherkel/SWR2-ASR" + LANGUAGE = "mls_german_opus" + split = Split.TRAIN + DOWNLOAD = False diff --git a/swr2_asr/utils/decoder.py b/swr2_asr/utils/decoder.py new file mode 100644 index 0000000..fcddb79 --- /dev/null +++ b/swr2_asr/utils/decoder.py @@ -0,0 +1,26 @@ +"""Decoder for CTC-based ASR.""" "" +import torch + +from swr2_asr.utils.tokenizer import CharTokenizer + + +# TODO: refactor to use torch CTC decoder class +def greedy_decoder(output, labels, label_lengths, tokenizer: CharTokenizer, collapse_repeated=True): + """Greedily decode a sequence.""" + blank_label = tokenizer.get_blank_token() + arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member + decodes = [] + targets = [] + for i, args in enumerate(arg_maxes): + decode = [] + targets.append(tokenizer.decode(labels[i][: label_lengths[i]].tolist())) + for j, index in enumerate(args): + if index != blank_label: + if collapse_repeated and j != 0 and index == args[j - 1]: + continue + decode.append(index.item()) + decodes.append(tokenizer.decode(decode)) + return decodes, targets + + +# TODO: add beam search decoder diff --git a/swr2_asr/utils/tokenizer.py b/swr2_asr/utils/tokenizer.py new file mode 100644 index 0000000..d92465a --- /dev/null +++ b/swr2_asr/utils/tokenizer.py @@ -0,0 +1,126 @@ +"""Tokenizer for Multilingual Librispeech datasets""" + + +class CharTokenizer: + """Maps characters to integers and vice versa""" + + def __init__(self): + char_map_str = """ + _ + <BLANK> + <UNK> + <SPACE> + a + b + c + d + e + f + g + h + i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + é + à + ä + ö + ß + ü + - + ' + + """ + + self.char_map = {} + self.index_map = {} + for idx, char in enumerate(char_map_str.strip().split("\n")): + char = char.strip() + self.char_map[char] = idx + self.index_map[idx] = char + self.index_map[1] = " " + + def encode(self, text: str) -> list[int]: + """Use a character map and convert text to an integer sequence""" + int_sequence = [] + for char in text: + if char == " ": + char = self.char_map["<SPACE>"] + elif char not in self.char_map: + char = self.char_map["<UNK>"] + else: + char = self.char_map[char] + int_sequence.append(char) + return int_sequence + + def decode(self, labels: list[int]) -> str: + """Use a character map and convert integer labels to an text sequence""" + string = [] + for i in labels: + string.append(self.index_map[i]) + return "".join(string).replace("<SPACE>", " ") + + def get_vocab_size(self) -> int: + """Get the number of unique characters in the dataset""" + return len(self.char_map) + + def get_blank_token(self) -> int: + """Get the integer representation of the <BLANK> character""" + return self.char_map["<BLANK>"] + + def get_unk_token(self) -> int: + """Get the integer representation of the <UNK> character""" + return self.char_map["<UNK>"] + + def get_space_token(self) -> int: + """Get the integer representation of the <SPACE> character""" + return self.char_map["<SPACE>"] + + # TODO: add train function + + def save(self, path: str) -> None: + """Save the tokenizer to a file""" + with open(path, "w", encoding="utf-8") as file: + for char, index in self.char_map.items(): + file.write(f"{char} {index}\n") + + @staticmethod + def from_file(tokenizer_file: str) -> "CharTokenizer": + """Instantiate a CharTokenizer from a file""" + load_tokenizer = CharTokenizer() + with open(tokenizer_file, "r", encoding="utf-8") as file: + for line in file: + line = line.strip() + if line: + char, index = line.split() + tokenizer.char_map[char] = int(index) + tokenizer.index_map[int(index)] = char + return load_tokenizer + + +if __name__ == "__main__": + tokenizer = CharTokenizer() + tokenizer.save("data/tokenizers/char_tokenizer_german.json") + print(tokenizer.char_map) + print(tokenizer.index_map) + print(tokenizer.get_vocab_size()) + print(tokenizer.get_blank_token()) + print(tokenizer.get_unk_token()) + print(tokenizer.get_space_token()) + print(tokenizer.encode("hallo welt")) + print(tokenizer.decode([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) diff --git a/swr2_asr/utils/visualization.py b/swr2_asr/utils/visualization.py new file mode 100644 index 0000000..80f942a --- /dev/null +++ b/swr2_asr/utils/visualization.py @@ -0,0 +1,22 @@ +"""Utilities for visualizing the training process and results.""" + +import matplotlib.pyplot as plt +import torch + + +def plot(epochs, path): + """Plots the losses over the epochs""" + losses = list() + test_losses = list() + cers = list() + wers = list() + for epoch in range(1, epochs + 1): + current_state = torch.load(path + str(epoch)) + losses.append(current_state["loss"]) + test_losses.append(current_state["test_loss"]) + cers.append(current_state["avg_cer"]) + wers.append(current_state["avg_wer"]) + + plt.plot(losses) + plt.plot(test_losses) + plt.savefig("losses.svg") |