1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
"""Class containing utils for the ASR system."""
import os
from enum import Enum
from typing import TypedDict
import numpy as np
import torch
import torchaudio
from torch import Tensor, nn
from torch.utils.data import Dataset
from torchaudio.datasets.utils import _extract_tar
from swr2_asr.utils.tokenizer import CharTokenizer
class DataProcessing:
"""Data processing class for the dataloader"""
def __init__(self, data_type: str, tokenizer: CharTokenizer):
self.data_type = data_type
self.tokenizer = tokenizer
if data_type == "train":
self.audio_transform = torch.nn.Sequential(
torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_mels=128),
torchaudio.transforms.FrequencyMasking(freq_mask_param=30),
torchaudio.transforms.TimeMasking(time_mask_param=100),
)
elif data_type == "valid":
self.audio_transform = torchaudio.transforms.MelSpectrogram()
def __call__(self, data) -> tuple[Tensor, Tensor, list, list]:
spectrograms = []
labels = []
input_lengths = []
label_lengths = []
for waveform, _, utterance, _, _, _ in data:
spec = self.audio_transform(waveform).squeeze(0).transpose(0, 1)
spectrograms.append(spec)
label = torch.Tensor(self.tokenizer.encode(utterance.lower()))
labels.append(label)
input_lengths.append(spec.shape[0] // 2)
label_lengths.append(len(label))
spectrograms = (
nn.utils.rnn.pad_sequence(spectrograms, batch_first=True).unsqueeze(1).transpose(2, 3)
)
labels = nn.utils.rnn.pad_sequence(labels, batch_first=True)
return spectrograms, labels, input_lengths, label_lengths
# create enum specifiying dataset splits
class MLSSplit(str, Enum):
"""Enum specifying dataset as they are defined in the
Multilingual LibriSpeech dataset"""
TRAIN = "train"
TEST = "test"
DEV = "dev"
class Split(str, Enum):
"""Extending the MLSSplit class to allow for a custom validation split"""
TRAIN = "train"
VALID = "valid"
TEST = "test"
DEV = "dev"
def split_to_mls_split(split_name: Split) -> MLSSplit:
"""Converts the custom split to a MLSSplit"""
if split_name == Split.VALID:
return MLSSplit.TRAIN
return split_name # type: ignore
class Sample(TypedDict):
"""Type for a sample in the dataset"""
waveform: torch.Tensor
spectrogram: torch.Tensor
input_length: int
utterance: torch.Tensor
utterance_length: int
sample_rate: int
speaker_id: str
book_id: str
chapter_id: str
class MLSDataset(Dataset):
"""Custom Dataset for reading Multilingual LibriSpeech
Attributes:
dataset_path (str):
path to the dataset
language (str):
language of the dataset
split (Split):
split of the dataset
mls_split (MLSSplit):
split of the dataset as defined in the Multilingual LibriSpeech dataset
dataset_lookup (list):
list of dicts containing the speakerid, bookid, chapterid and utterance
directory structure:
<dataset_path>
├── <language>
│ ├── train
│ │ ├── transcripts.txt
│ │ └── audio
│ │ └── <speakerid>
│ │ └── <bookid>
│ │ └── <speakerid>_<bookid>_<chapterid>.opus / .flac
each line in transcripts.txt has the following format:
<speakerid>_<bookid>_<chapterid> <utterance>
"""
def __init__(
self,
dataset_path: str,
language: str,
split: Split,
limited: bool,
download: bool,
size: float = 0.2,
):
"""Initializes the dataset"""
self.dataset_path = dataset_path
self.language = language
self.file_ext = ".opus" if "opus" in language else ".flac"
self.mls_split: MLSSplit = split_to_mls_split(split) # split path on disk
self.split: Split = split # split used internally
self.dataset_lookup = []
self._handle_download_dataset(download)
self._validate_local_directory()
if limited and (split == Split.TRAIN or split == Split.VALID):
self.initialize_limited()
else:
self.initialize()
self.dataset_lookup = self.dataset_lookup[: int(len(self.dataset_lookup) * size)]
def initialize_limited(self) -> None:
"""Initializes the limited supervision dataset"""
# get file handles
# get file paths
# get transcripts
# create train or validation split
handles = set()
train_root_path = os.path.join(self.dataset_path, self.language, "train")
# get file handles for 9h
with open(
os.path.join(train_root_path, "limited_supervision", "9hr", "handles.txt"),
"r",
encoding="utf-8",
) as file:
for line in file:
handles.add(line.strip())
# get file handles for 1h splits
for handle_path in os.listdir(os.path.join(train_root_path, "limited_supervision", "1hr")):
if handle_path not in range(0, 6):
continue
with open(
os.path.join(
train_root_path, "limited_supervision", "1hr", handle_path, "handles.txt"
),
"r",
encoding="utf-8",
) as file:
for line in file:
handles.add(line.strip())
# get file paths for handles
file_paths = []
for handle in handles:
file_paths.append(
os.path.join(
train_root_path,
"audio",
handle.split("_")[0],
handle.split("_")[1],
handle + self.file_ext,
)
)
# get transcripts for handles
transcripts = []
with open(os.path.join(train_root_path, "transcripts.txt"), "r", encoding="utf-8") as file:
for line in file:
if line.split("\t")[0] in handles:
transcripts.append(line.strip())
# create train or valid split randomly with seed 42
if self.split == Split.TRAIN:
np.random.seed(42)
indices = np.random.choice(len(file_paths), int(len(file_paths) * 0.8))
file_paths = [file_paths[i] for i in indices]
transcripts = [transcripts[i] for i in indices]
elif self.split == Split.VALID:
np.random.seed(42)
indices = np.random.choice(len(file_paths), int(len(file_paths) * 0.2))
file_paths = [file_paths[i] for i in indices]
transcripts = [transcripts[i] for i in indices]
# create dataset lookup
self.dataset_lookup = [
{
"speakerid": path.split("/")[-3],
"bookid": path.split("/")[-2],
"chapterid": path.split("/")[-1].split("_")[2].split(".")[0],
"utterance": utterance.split("\t")[1],
}
for path, utterance in zip(file_paths, transcripts, strict=False)
]
def initialize(self) -> None:
"""Initializes the entire dataset
Reads the transcripts.txt file and creates a lookup table
"""
transcripts_path = os.path.join(
self.dataset_path, self.language, self.mls_split, "transcripts.txt"
)
with open(transcripts_path, "r", encoding="utf-8") as script_file:
# read all lines in transcripts.txt
transcripts = script_file.readlines()
# split each line into (<speakerid>_<bookid>_<chapterid>, <utterance>)
transcripts = [line.strip().split("\t", 1) for line in transcripts] # type: ignore
utterances = [utterance.strip() for _, utterance in transcripts] # type: ignore
identifier = [identifier.strip() for identifier, _ in transcripts] # type: ignore
identifier = [path.split("_") for path in identifier]
if self.split == Split.VALID:
np.random.seed(42)
indices = np.random.choice(len(utterances), int(len(utterances) * 0.2))
utterances = [utterances[i] for i in indices]
identifier = [identifier[i] for i in indices]
elif self.split == Split.TRAIN:
np.random.seed(42)
indices = np.random.choice(len(utterances), int(len(utterances) * 0.8))
utterances = [utterances[i] for i in indices]
identifier = [identifier[i] for i in indices]
self.dataset_lookup = [
{
"speakerid": path[0],
"bookid": path[1],
"chapterid": path[2],
"utterance": utterance,
}
for path, utterance in zip(identifier, utterances, strict=False)
]
def _handle_download_dataset(self, download: bool) -> None:
"""Download the dataset"""
if not download:
print("Download flag not set, skipping download")
return
# zip exists:
if os.path.isfile(os.path.join(self.dataset_path, self.language) + ".tar.gz") and download:
print(f"Found dataset at {self.dataset_path}. Skipping download")
# path exists:
elif os.path.isdir(os.path.join(self.dataset_path, self.language)) and download:
return
else:
os.makedirs(self.dataset_path, exist_ok=True)
url = f"https://dl.fbaipublicfiles.com/mls/{self.language}.tar.gz"
torch.hub.download_url_to_file(
url, os.path.join(self.dataset_path, self.language) + ".tar.gz"
)
# unzip the dataset
if not os.path.isdir(os.path.join(self.dataset_path, self.language)):
print(
f"Unzipping the dataset at \
{os.path.join(self.dataset_path, self.language) + '.tar.gz'}"
)
_extract_tar(os.path.join(self.dataset_path, self.language) + ".tar.gz", overwrite=True)
else:
print("Dataset is already unzipped, validating it now")
return
def _validate_local_directory(self):
# check if dataset_path exists
if not os.path.exists(self.dataset_path):
raise ValueError("Dataset path does not exist")
if not os.path.exists(os.path.join(self.dataset_path, self.language)):
raise ValueError("Language not downloaded!")
if not os.path.exists(os.path.join(self.dataset_path, self.language, self.mls_split)):
raise ValueError("Split not found in dataset")
def __len__(self):
"""Returns the length of the dataset"""
return len(self.dataset_lookup)
def __getitem__(self, idx: int) -> tuple[Tensor, int, str, int, int, int]:
"""One sample
Returns:
Tuple of the following items;
Tensor:
Waveform
int:
Sample rate
str:
Transcript
int:
Speaker ID
int:
Chapter ID
int:
Utterance ID
"""
# get the utterance
dataset_lookup_entry = self.dataset_lookup[idx]
utterance = dataset_lookup_entry["utterance"]
# get the audio file
audio_path = os.path.join(
self.dataset_path,
self.language,
self.mls_split,
"audio",
self.dataset_lookup[idx]["speakerid"],
self.dataset_lookup[idx]["bookid"],
"_".join(
[
self.dataset_lookup[idx]["speakerid"],
self.dataset_lookup[idx]["bookid"],
self.dataset_lookup[idx]["chapterid"],
]
)
+ self.file_ext,
)
waveform, sample_rate = torchaudio.load(audio_path) # pylint: disable=no-member
# resample if necessary
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)
return (
waveform,
sample_rate,
utterance,
dataset_lookup_entry["speakerid"],
dataset_lookup_entry["chapterid"],
idx,
) # type: ignore
if __name__ == "__main__":
DATASET_PATH = "/Volumes/pherkel/SWR2-ASR"
LANGUAGE = "mls_german_opus"
split = Split.TRAIN
DOWNLOAD = False
|