diff options
Diffstat (limited to 'node_modules/locutus/php/_helpers/_bc.js')
-rw-r--r-- | node_modules/locutus/php/_helpers/_bc.js | 1258 |
1 files changed, 0 insertions, 1258 deletions
diff --git a/node_modules/locutus/php/_helpers/_bc.js b/node_modules/locutus/php/_helpers/_bc.js deleted file mode 100644 index ac27204..0000000 --- a/node_modules/locutus/php/_helpers/_bc.js +++ /dev/null @@ -1,1258 +0,0 @@ -'use strict'; - -module.exports = function _bc() { - // eslint-disable-line camelcase - // discuss at: http://locutus.io/php/_helpers/_bc - // original by: lmeyrick (https://sourceforge.net/projects/bcmath-js/) - // improved by: Brett Zamir (http://brett-zamir.me) - // example 1: var $bc = _bc() - // example 1: var $result = $bc.PLUS - // returns 1: '+' - - /** - * BC Math Library for Javascript - * Ported from the PHP5 bcmath extension source code, - * which uses the Libbcmath package... - * Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc. - * Copyright (C) 2000 Philip A. Nelson - * The Free Software Foundation, Inc. - * 59 Temple Place, Suite 330 - * Boston, MA 02111-1307 USA. - * e-mail: philnelson@acm.org - * us-mail: Philip A. Nelson - * Computer Science Department, 9062 - * Western Washington University - * Bellingham, WA 98226-9062 - * - * bcmath-js homepage: - * - * This code is covered under the LGPL licence, and can be used however you want :) - * Be kind and share any decent code changes. - */ - - /** - * Binary Calculator (BC) Arbitrary Precision Mathematics Lib v0.10 (LGPL) - * Copy of Libbcmath included in PHP5 src - * - * Note: this is just the shared library file and does not include the php-style functions. - * use bcmath{-min}.js for functions like bcadd, bcsub etc. - * - * Feel free to use how-ever you want, just email any bug-fixes/improvements - * to the sourceforge project: - * - * - * Ported from the PHP5 bcmath extension source code, - * which uses the Libbcmath package... - * Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc. - * Copyright (C) 2000 Philip A. Nelson - * The Free Software Foundation, Inc. - * 59 Temple Place, Suite 330 - * Boston, MA 02111-1307 USA. - * e-mail: philnelson@acm.org - * us-mail: Philip A. Nelson - * Computer Science Department, 9062 - * Western Washington University - * Bellingham, WA 98226-9062 - */ - - var Libbcmath = { - PLUS: '+', - MINUS: '-', - BASE: 10, - // must be 10 (for now) - scale: 0, - // default scale - /** - * Basic number structure - */ - bc_num: function bc_num() { - this.n_sign = null; // sign - this.n_len = null; // (int) The number of digits before the decimal point. - this.n_scale = null; // (int) The number of digits after the decimal point. - // this.n_refs = null; // (int) The number of pointers to this number. - // this.n_text = null; // ?? Linked list for available list. - this.n_value = null; // array as value, where 1.23 = [1,2,3] - this.toString = function () { - var r, tmp; - tmp = this.n_value.join(''); - - // add minus sign (if applicable) then add the integer part - r = (this.n_sign === Libbcmath.PLUS ? '' : this.n_sign) + tmp.substr(0, this.n_len); - - // if decimal places, add a . and the decimal part - if (this.n_scale > 0) { - r += '.' + tmp.substr(this.n_len, this.n_scale); - } - return r; - }; - }, - - /** - * Base add function - * - // Here is the full add routine that takes care of negative numbers. - // N1 is added to N2 and the result placed into RESULT. SCALE_MIN - // is the minimum scale for the result. - * - * @param {bc_num} n1 - * @param {bc_num} n2 - * @param {int} scaleMin - * @return bc_num - */ - bc_add: function bc_add(n1, n2, scaleMin) { - var sum, cmpRes, resScale; - - if (n1.n_sign === n2.n_sign) { - sum = Libbcmath._bc_do_add(n1, n2, scaleMin); - sum.n_sign = n1.n_sign; - } else { - // subtraction must be done. - cmpRes = Libbcmath._bc_do_compare(n1, n2, false, false); // Compare magnitudes. - switch (cmpRes) { - case -1: - // n1 is less than n2, subtract n1 from n2. - sum = Libbcmath._bc_do_sub(n2, n1, scaleMin); - sum.n_sign = n2.n_sign; - break; - - case 0: - // They are equal! return zero with the correct scale! - resScale = Libbcmath.MAX(scaleMin, Libbcmath.MAX(n1.n_scale, n2.n_scale)); - sum = Libbcmath.bc_new_num(1, resScale); - Libbcmath.memset(sum.n_value, 0, 0, resScale + 1); - break; - - case 1: - // n2 is less than n1, subtract n2 from n1. - sum = Libbcmath._bc_do_sub(n1, n2, scaleMin); - sum.n_sign = n1.n_sign; - } - } - return sum; - }, - - /** - * This is the "user callable" routine to compare numbers N1 and N2. - * @param {bc_num} n1 - * @param {bc_num} n2 - * @return int -1, 0, 1 (n1 < n2, ===, n1 > n2) - */ - bc_compare: function bc_compare(n1, n2) { - return Libbcmath._bc_do_compare(n1, n2, true, false); - }, - - _one_mult: function _one_mult(num, nPtr, size, digit, result, rPtr) { - var carry, value; // int - var nptr, rptr; // int pointers - if (digit === 0) { - Libbcmath.memset(result, 0, 0, size); // memset (result, 0, size); - } else { - if (digit === 1) { - Libbcmath.memcpy(result, rPtr, num, nPtr, size); // memcpy (result, num, size); - } else { - // Initialize - nptr = nPtr + size - 1; // nptr = (unsigned char *) (num+size-1); - rptr = rPtr + size - 1; // rptr = (unsigned char *) (result+size-1); - carry = 0; - - while (size-- > 0) { - value = num[nptr--] * digit + carry; // value = *nptr-- * digit + carry; - result[rptr--] = value % Libbcmath.BASE; // @CHECK cint //*rptr-- = value % BASE; - carry = Math.floor(value / Libbcmath.BASE); // @CHECK cint //carry = value / BASE; - } - - if (carry !== 0) { - result[rptr] = carry; - } - } - } - }, - - bc_divide: function bc_divide(n1, n2, scale) { - // var quot // bc_num return - var qval; // bc_num - var num1, num2; // string - var ptr1, ptr2, n2ptr, qptr; // int pointers - var scale1, val; // int - var len1, len2, scale2, qdigits, extra, count; // int - var qdig, qguess, borrow, carry; // int - var mval; // string - var zero; // char - var norm; // int - // var ptrs // return object from one_mul - // Test for divide by zero. (return failure) - if (Libbcmath.bc_is_zero(n2)) { - return -1; - } - - // Test for zero divide by anything (return zero) - if (Libbcmath.bc_is_zero(n1)) { - return Libbcmath.bc_new_num(1, scale); - } - - /* Test for n1 equals n2 (return 1 as n1 nor n2 are zero) - if (Libbcmath.bc_compare(n1, n2, Libbcmath.MAX(n1.n_scale, n2.n_scale)) === 0) { - quot=Libbcmath.bc_new_num(1, scale); - quot.n_value[0] = 1; - return quot; - } - */ - - // Test for divide by 1. If it is we must truncate. - // @todo: check where scale > 0 too.. can't see why not - // (ie bc_is_zero - add bc_is_one function) - if (n2.n_scale === 0) { - if (n2.n_len === 1 && n2.n_value[0] === 1) { - qval = Libbcmath.bc_new_num(n1.n_len, scale); // qval = bc_new_num (n1->n_len, scale); - qval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS; - // memset (&qval->n_value[n1->n_len],0,scale): - Libbcmath.memset(qval.n_value, n1.n_len, 0, scale); - // memcpy (qval->n_value, n1->n_value, n1->n_len + MIN(n1->n_scale,scale)): - Libbcmath.memcpy(qval.n_value, 0, n1.n_value, 0, n1.n_len + Libbcmath.MIN(n1.n_scale, scale)); - // can we return here? not in c src, but can't see why-not. - // return qval; - } - } - - /* Set up the divide. Move the decimal point on n1 by n2's scale. - Remember, zeros on the end of num2 are wasted effort for dividing. */ - scale2 = n2.n_scale; // scale2 = n2->n_scale; - n2ptr = n2.n_len + scale2 - 1; // n2ptr = (unsigned char *) n2.n_value+n2.n_len+scale2-1; - while (scale2 > 0 && n2.n_value[n2ptr--] === 0) { - scale2--; - } - - len1 = n1.n_len + scale2; - scale1 = n1.n_scale - scale2; - if (scale1 < scale) { - extra = scale - scale1; - } else { - extra = 0; - } - - // num1 = (unsigned char *) safe_emalloc (1, n1.n_len+n1.n_scale, extra+2): - num1 = Libbcmath.safe_emalloc(1, n1.n_len + n1.n_scale, extra + 2); - if (num1 === null) { - Libbcmath.bc_out_of_memory(); - } - // memset (num1, 0, n1->n_len+n1->n_scale+extra+2): - Libbcmath.memset(num1, 0, 0, n1.n_len + n1.n_scale + extra + 2); - // memcpy (num1+1, n1.n_value, n1.n_len+n1.n_scale): - Libbcmath.memcpy(num1, 1, n1.n_value, 0, n1.n_len + n1.n_scale); - // len2 = n2->n_len + scale2: - len2 = n2.n_len + scale2; - // num2 = (unsigned char *) safe_emalloc (1, len2, 1): - num2 = Libbcmath.safe_emalloc(1, len2, 1); - if (num2 === null) { - Libbcmath.bc_out_of_memory(); - } - // memcpy (num2, n2.n_value, len2): - Libbcmath.memcpy(num2, 0, n2.n_value, 0, len2); - // *(num2+len2) = 0: - num2[len2] = 0; - // n2ptr = num2: - n2ptr = 0; - // while (*n2ptr === 0): - while (num2[n2ptr] === 0) { - n2ptr++; - len2--; - } - - // Calculate the number of quotient digits. - if (len2 > len1 + scale) { - qdigits = scale + 1; - zero = true; - } else { - zero = false; - if (len2 > len1) { - qdigits = scale + 1; // One for the zero integer part. - } else { - qdigits = len1 - len2 + scale + 1; - } - } - - // Allocate and zero the storage for the quotient. - // qval = bc_new_num (qdigits-scale,scale); - qval = Libbcmath.bc_new_num(qdigits - scale, scale); - // memset (qval->n_value, 0, qdigits); - Libbcmath.memset(qval.n_value, 0, 0, qdigits); - // Allocate storage for the temporary storage mval. - // mval = (unsigned char *) safe_emalloc (1, len2, 1); - mval = Libbcmath.safe_emalloc(1, len2, 1); - if (mval === null) { - Libbcmath.bc_out_of_memory(); - } - - // Now for the full divide algorithm. - if (!zero) { - // Normalize - // norm = Libbcmath.cint(10 / (Libbcmath.cint(n2.n_value[n2ptr]) + 1)); - // norm = 10 / ((int)*n2ptr + 1) - norm = Math.floor(10 / (n2.n_value[n2ptr] + 1)); // norm = 10 / ((int)*n2ptr + 1); - if (norm !== 1) { - // Libbcmath._one_mult(num1, len1+scale1+extra+1, norm, num1); - Libbcmath._one_mult(num1, 0, len1 + scale1 + extra + 1, norm, num1, 0); - // Libbcmath._one_mult(n2ptr, len2, norm, n2ptr); - Libbcmath._one_mult(n2.n_value, n2ptr, len2, norm, n2.n_value, n2ptr); - // @todo: Check: Is the pointer affected by the call? if so, - // maybe need to adjust points on return? - } - - // Initialize divide loop. - qdig = 0; - if (len2 > len1) { - qptr = len2 - len1; // qptr = (unsigned char *) qval.n_value+len2-len1; - } else { - qptr = 0; // qptr = (unsigned char *) qval.n_value; - } - - // Loop - while (qdig <= len1 + scale - len2) { - // Calculate the quotient digit guess. - if (n2.n_value[n2ptr] === num1[qdig]) { - qguess = 9; - } else { - qguess = Math.floor((num1[qdig] * 10 + num1[qdig + 1]) / n2.n_value[n2ptr]); - } - // Test qguess. - - if (n2.n_value[n2ptr + 1] * qguess > (num1[qdig] * 10 + num1[qdig + 1] - n2.n_value[n2ptr] * qguess) * 10 + num1[qdig + 2]) { - qguess--; - // And again. - if (n2.n_value[n2ptr + 1] * qguess > (num1[qdig] * 10 + num1[qdig + 1] - n2.n_value[n2ptr] * qguess) * 10 + num1[qdig + 2]) { - qguess--; - } - } - - // Multiply and subtract. - borrow = 0; - if (qguess !== 0) { - mval[0] = 0; //* mval = 0; // @CHECK is this to fix ptr2 < 0? - // _one_mult (n2ptr, len2, qguess, mval+1); // @CHECK - Libbcmath._one_mult(n2.n_value, n2ptr, len2, qguess, mval, 1); - ptr1 = qdig + len2; // (unsigned char *) num1+qdig+len2; - ptr2 = len2; // (unsigned char *) mval+len2; - // @todo: CHECK: Does a negative pointer return null? - // ptr2 can be < 0 here as ptr1 = len2, thus count < len2+1 will always fail ? - for (count = 0; count < len2 + 1; count++) { - if (ptr2 < 0) { - // val = Libbcmath.cint(num1[ptr1]) - 0 - borrow; - // val = (int) *ptr1 - (int) *ptr2-- - borrow; - val = num1[ptr1] - 0 - borrow; // val = (int) *ptr1 - (int) *ptr2-- - borrow; - } else { - // val = Libbcmath.cint(num1[ptr1]) - Libbcmath.cint(mval[ptr2--]) - borrow; - // val = (int) *ptr1 - (int) *ptr2-- - borrow; - // val = (int) *ptr1 - (int) *ptr2-- - borrow; - val = num1[ptr1] - mval[ptr2--] - borrow; - } - if (val < 0) { - val += 10; - borrow = 1; - } else { - borrow = 0; - } - num1[ptr1--] = val; - } - } - - // Test for negative result. - if (borrow === 1) { - qguess--; - ptr1 = qdig + len2; // (unsigned char *) num1+qdig+len2; - ptr2 = len2 - 1; // (unsigned char *) n2ptr+len2-1; - carry = 0; - for (count = 0; count < len2; count++) { - if (ptr2 < 0) { - // val = Libbcmath.cint(num1[ptr1]) + 0 + carry; - // val = (int) *ptr1 + (int) *ptr2-- + carry; - // val = (int) *ptr1 + (int) *ptr2-- + carry; - val = num1[ptr1] + 0 + carry; - } else { - // val = Libbcmath.cint(num1[ptr1]) + Libbcmath.cint(n2.n_value[ptr2--]) + carry; - // val = (int) *ptr1 + (int) *ptr2-- + carry; - // val = (int) *ptr1 + (int) *ptr2-- + carry; - val = num1[ptr1] + n2.n_value[ptr2--] + carry; - } - if (val > 9) { - val -= 10; - carry = 1; - } else { - carry = 0; - } - num1[ptr1--] = val; //* ptr1-- = val; - } - if (carry === 1) { - // num1[ptr1] = Libbcmath.cint((num1[ptr1] + 1) % 10); - // *ptr1 = (*ptr1 + 1) % 10; // @CHECK - // *ptr1 = (*ptr1 + 1) % 10; // @CHECK - num1[ptr1] = (num1[ptr1] + 1) % 10; - } - } - - // We now know the quotient digit. - qval.n_value[qptr++] = qguess; //* qptr++ = qguess; - qdig++; - } - } - - // Clean up and return the number. - qval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS; - if (Libbcmath.bc_is_zero(qval)) { - qval.n_sign = Libbcmath.PLUS; - } - Libbcmath._bc_rm_leading_zeros(qval); - - return qval; - - // return 0; // Everything is OK. - }, - - MUL_BASE_DIGITS: 80, - MUL_SMALL_DIGITS: 80 / 4, - // #define MUL_SMALL_DIGITS mul_base_digits/4 - - /* The multiply routine. N2 times N1 is put int PROD with the scale of - the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)). - */ - /** - * @param n1 bc_num - * @param n2 bc_num - * @param scale [int] optional - */ - bc_multiply: function bc_multiply(n1, n2, scale) { - var pval; // bc_num - var len1, len2; // int - var fullScale, prodScale; // int - // Initialize things. - len1 = n1.n_len + n1.n_scale; - len2 = n2.n_len + n2.n_scale; - fullScale = n1.n_scale + n2.n_scale; - prodScale = Libbcmath.MIN(fullScale, Libbcmath.MAX(scale, Libbcmath.MAX(n1.n_scale, n2.n_scale))); - - // pval = Libbcmath.bc_init_num(); // allow pass by ref - // Do the multiply - pval = Libbcmath._bc_rec_mul(n1, len1, n2, len2, fullScale); - - // Assign to prod and clean up the number. - pval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS; - // pval.n_value = pval.nPtr; - pval.n_len = len2 + len1 + 1 - fullScale; - pval.n_scale = prodScale; - Libbcmath._bc_rm_leading_zeros(pval); - if (Libbcmath.bc_is_zero(pval)) { - pval.n_sign = Libbcmath.PLUS; - } - // bc_free_num (prod); - return pval; - }, - - new_sub_num: function new_sub_num(length, scale, value) { - var ptr = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : 0; - - var temp = new Libbcmath.bc_num(); // eslint-disable-line new-cap - temp.n_sign = Libbcmath.PLUS; - temp.n_len = length; - temp.n_scale = scale; - temp.n_value = Libbcmath.safe_emalloc(1, length + scale, 0); - Libbcmath.memcpy(temp.n_value, 0, value, ptr, length + scale); - return temp; - }, - - _bc_simp_mul: function _bc_simp_mul(n1, n1len, n2, n2len, fullScale) { - var prod; // bc_num - var n1ptr, n2ptr, pvptr; // char *n1ptr, *n2ptr, *pvptr; - var n1end, n2end; // char *n1end, *n2end; // To the end of n1 and n2. - var indx, sum, prodlen; // int indx, sum, prodlen; - prodlen = n1len + n2len + 1; - - prod = Libbcmath.bc_new_num(prodlen, 0); - - n1end = n1len - 1; // (char *) (n1->n_value + n1len - 1); - n2end = n2len - 1; // (char *) (n2->n_value + n2len - 1); - pvptr = prodlen - 1; // (char *) ((*prod)->n_value + prodlen - 1); - sum = 0; - - // Here is the loop... - for (indx = 0; indx < prodlen - 1; indx++) { - // (char *) (n1end - MAX(0, indx-n2len+1)); - n1ptr = n1end - Libbcmath.MAX(0, indx - n2len + 1); - // (char *) (n2end - MIN(indx, n2len-1)); - n2ptr = n2end - Libbcmath.MIN(indx, n2len - 1); - while (n1ptr >= 0 && n2ptr <= n2end) { - // sum += *n1ptr-- * *n2ptr++; - sum += n1.n_value[n1ptr--] * n2.n_value[n2ptr++]; - } - //* pvptr-- = sum % BASE; - prod.n_value[pvptr--] = Math.floor(sum % Libbcmath.BASE); - sum = Math.floor(sum / Libbcmath.BASE); // sum = sum / BASE; - } - prod.n_value[pvptr] = sum; //* pvptr = sum; - return prod; - }, - - /* A special adder/subtractor for the recursive divide and conquer - multiply algorithm. Note: if sub is called, accum must - be larger that what is being subtracted. Also, accum and val - must have n_scale = 0. (e.g. they must look like integers. *) */ - _bc_shift_addsub: function _bc_shift_addsub(accum, val, shift, sub) { - var accp, valp; // signed char *accp, *valp; - var count, carry; // int count, carry; - count = val.n_len; - if (val.n_value[0] === 0) { - count--; - } - - // assert (accum->n_len+accum->n_scale >= shift+count); - if (accum.n_len + accum.n_scale < shift + count) { - throw new Error('len + scale < shift + count'); // ?? I think that's what assert does :) - } - - // Set up pointers and others - // (signed char *)(accum->n_value + accum->n_len + accum->n_scale - shift - 1); - accp = accum.n_len + accum.n_scale - shift - 1; - valp = val.n_len - 1; // (signed char *)(val->n_value + val->n_len - 1); - carry = 0; - if (sub) { - // Subtraction, carry is really borrow. - while (count--) { - accum.n_value[accp] -= val.n_value[valp--] + carry; //* accp -= *valp-- + carry; - if (accum.n_value[accp] < 0) { - // if (*accp < 0) - carry = 1; - accum.n_value[accp--] += Libbcmath.BASE; //* accp-- += BASE; - } else { - carry = 0; - accp--; - } - } - while (carry) { - accum.n_value[accp] -= carry; //* accp -= carry; - if (accum.n_value[accp] < 0) { - // if (*accp < 0) - accum.n_value[accp--] += Libbcmath.BASE; // *accp-- += BASE; - } else { - carry = 0; - } - } - } else { - // Addition - while (count--) { - accum.n_value[accp] += val.n_value[valp--] + carry; //* accp += *valp-- + carry; - if (accum.n_value[accp] > Libbcmath.BASE - 1) { - // if (*accp > (BASE-1)) - carry = 1; - accum.n_value[accp--] -= Libbcmath.BASE; //* accp-- -= BASE; - } else { - carry = 0; - accp--; - } - } - while (carry) { - accum.n_value[accp] += carry; //* accp += carry; - if (accum.n_value[accp] > Libbcmath.BASE - 1) { - // if (*accp > (BASE-1)) - accum.n_value[accp--] -= Libbcmath.BASE; //* accp-- -= BASE; - } else { - carry = 0; - } - } - } - return true; // accum is the pass-by-reference return - }, - - /* Recursive divide and conquer multiply algorithm. - based on - Let u = u0 + u1*(b^n) - Let v = v0 + v1*(b^n) - Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0 - B is the base of storage, number of digits in u1,u0 close to equal. - */ - _bc_rec_mul: function _bc_rec_mul(u, ulen, v, vlen, fullScale) { - var prod; // @return - var u0, u1, v0, v1; // bc_num - // var u0len, - // var v0len // int - var m1, m2, m3, d1, d2; // bc_num - var n, prodlen, m1zero; // int - var d1len, d2len; // int - // Base case? - if (ulen + vlen < Libbcmath.MUL_BASE_DIGITS || ulen < Libbcmath.MUL_SMALL_DIGITS || vlen < Libbcmath.MUL_SMALL_DIGITS) { - return Libbcmath._bc_simp_mul(u, ulen, v, vlen, fullScale); - } - - // Calculate n -- the u and v split point in digits. - n = Math.floor((Libbcmath.MAX(ulen, vlen) + 1) / 2); - - // Split u and v. - if (ulen < n) { - u1 = Libbcmath.bc_init_num(); // u1 = bc_copy_num (BCG(_zero_)); - u0 = Libbcmath.new_sub_num(ulen, 0, u.n_value); - } else { - u1 = Libbcmath.new_sub_num(ulen - n, 0, u.n_value); - u0 = Libbcmath.new_sub_num(n, 0, u.n_value, ulen - n); - } - if (vlen < n) { - v1 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_)); - v0 = Libbcmath.new_sub_num(vlen, 0, v.n_value); - } else { - v1 = Libbcmath.new_sub_num(vlen - n, 0, v.n_value); - v0 = Libbcmath.new_sub_num(n, 0, v.n_value, vlen - n); - } - Libbcmath._bc_rm_leading_zeros(u1); - Libbcmath._bc_rm_leading_zeros(u0); - // var u0len = u0.n_len - Libbcmath._bc_rm_leading_zeros(v1); - Libbcmath._bc_rm_leading_zeros(v0); - // var v0len = v0.n_len - - m1zero = Libbcmath.bc_is_zero(u1) || Libbcmath.bc_is_zero(v1); - - // Calculate sub results ... - d1 = Libbcmath.bc_init_num(); // needed? - d2 = Libbcmath.bc_init_num(); // needed? - d1 = Libbcmath.bc_sub(u1, u0, 0); - d1len = d1.n_len; - - d2 = Libbcmath.bc_sub(v0, v1, 0); - d2len = d2.n_len; - - // Do recursive multiplies and shifted adds. - if (m1zero) { - m1 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_)); - } else { - // m1 = Libbcmath.bc_init_num(); //allow pass-by-ref - m1 = Libbcmath._bc_rec_mul(u1, u1.n_len, v1, v1.n_len, 0); - } - if (Libbcmath.bc_is_zero(d1) || Libbcmath.bc_is_zero(d2)) { - m2 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_)); - } else { - // m2 = Libbcmath.bc_init_num(); //allow pass-by-ref - m2 = Libbcmath._bc_rec_mul(d1, d1len, d2, d2len, 0); - } - - if (Libbcmath.bc_is_zero(u0) || Libbcmath.bc_is_zero(v0)) { - m3 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_)); - } else { - // m3 = Libbcmath.bc_init_num(); //allow pass-by-ref - m3 = Libbcmath._bc_rec_mul(u0, u0.n_len, v0, v0.n_len, 0); - } - - // Initialize product - prodlen = ulen + vlen + 1; - prod = Libbcmath.bc_new_num(prodlen, 0); - - if (!m1zero) { - Libbcmath._bc_shift_addsub(prod, m1, 2 * n, 0); - Libbcmath._bc_shift_addsub(prod, m1, n, 0); - } - Libbcmath._bc_shift_addsub(prod, m3, n, 0); - Libbcmath._bc_shift_addsub(prod, m3, 0, 0); - Libbcmath._bc_shift_addsub(prod, m2, n, d1.n_sign !== d2.n_sign); - - return prod; - // Now clean up! - // bc_free_num (&u1); - // bc_free_num (&u0); - // bc_free_num (&v1); - // bc_free_num (&m1); - // bc_free_num (&v0); - // bc_free_num (&m2); - // bc_free_num (&m3); - // bc_free_num (&d1); - // bc_free_num (&d2); - }, - - /** - * - * @param {bc_num} n1 - * @param {bc_num} n2 - * @param {boolean} useSign - * @param {boolean} ignoreLast - * @return -1, 0, 1 (see bc_compare) - */ - _bc_do_compare: function _bc_do_compare(n1, n2, useSign, ignoreLast) { - var n1ptr, n2ptr; // int - var count; // int - // First, compare signs. - if (useSign && n1.n_sign !== n2.n_sign) { - if (n1.n_sign === Libbcmath.PLUS) { - return 1; // Positive N1 > Negative N2 - } else { - return -1; // Negative N1 < Positive N1 - } - } - - // Now compare the magnitude. - if (n1.n_len !== n2.n_len) { - if (n1.n_len > n2.n_len) { - // Magnitude of n1 > n2. - if (!useSign || n1.n_sign === Libbcmath.PLUS) { - return 1; - } else { - return -1; - } - } else { - // Magnitude of n1 < n2. - if (!useSign || n1.n_sign === Libbcmath.PLUS) { - return -1; - } else { - return 1; - } - } - } - - /* If we get here, they have the same number of integer digits. - check the integer part and the equal length part of the fraction. */ - count = n1.n_len + Math.min(n1.n_scale, n2.n_scale); - n1ptr = 0; - n2ptr = 0; - - while (count > 0 && n1.n_value[n1ptr] === n2.n_value[n2ptr]) { - n1ptr++; - n2ptr++; - count--; - } - - if (ignoreLast && count === 1 && n1.n_scale === n2.n_scale) { - return 0; - } - - if (count !== 0) { - if (n1.n_value[n1ptr] > n2.n_value[n2ptr]) { - // Magnitude of n1 > n2. - if (!useSign || n1.n_sign === Libbcmath.PLUS) { - return 1; - } else { - return -1; - } - } else { - // Magnitude of n1 < n2. - if (!useSign || n1.n_sign === Libbcmath.PLUS) { - return -1; - } else { - return 1; - } - } - } - - // They are equal up to the last part of the equal part of the fraction. - if (n1.n_scale !== n2.n_scale) { - if (n1.n_scale > n2.n_scale) { - for (count = n1.n_scale - n2.n_scale; count > 0; count--) { - if (n1.n_value[n1ptr++] !== 0) { - // Magnitude of n1 > n2. - if (!useSign || n1.n_sign === Libbcmath.PLUS) { - return 1; - } else { - return -1; - } - } - } - } else { - for (count = n2.n_scale - n1.n_scale; count > 0; count--) { - if (n2.n_value[n2ptr++] !== 0) { - // Magnitude of n1 < n2. - if (!useSign || n1.n_sign === Libbcmath.PLUS) { - return -1; - } else { - return 1; - } - } - } - } - } - - // They must be equal! - return 0; - }, - - /* Here is the full subtract routine that takes care of negative numbers. - N2 is subtracted from N1 and the result placed in RESULT. SCALE_MIN - is the minimum scale for the result. */ - bc_sub: function bc_sub(n1, n2, scaleMin) { - var diff; // bc_num - var cmpRes, resScale; // int - if (n1.n_sign !== n2.n_sign) { - diff = Libbcmath._bc_do_add(n1, n2, scaleMin); - diff.n_sign = n1.n_sign; - } else { - // subtraction must be done. - // Compare magnitudes. - cmpRes = Libbcmath._bc_do_compare(n1, n2, false, false); - switch (cmpRes) { - case -1: - // n1 is less than n2, subtract n1 from n2. - diff = Libbcmath._bc_do_sub(n2, n1, scaleMin); - diff.n_sign = n2.n_sign === Libbcmath.PLUS ? Libbcmath.MINUS : Libbcmath.PLUS; - break; - case 0: - // They are equal! return zero! - resScale = Libbcmath.MAX(scaleMin, Libbcmath.MAX(n1.n_scale, n2.n_scale)); - diff = Libbcmath.bc_new_num(1, resScale); - Libbcmath.memset(diff.n_value, 0, 0, resScale + 1); - break; - case 1: - // n2 is less than n1, subtract n2 from n1. - diff = Libbcmath._bc_do_sub(n1, n2, scaleMin); - diff.n_sign = n1.n_sign; - break; - } - } - - // Clean up and return. - // bc_free_num (result); - //* result = diff; - return diff; - }, - - _bc_do_add: function _bc_do_add(n1, n2, scaleMin) { - var sum; // bc_num - var sumScale, sumDigits; // int - var n1ptr, n2ptr, sumptr; // int - var carry, n1bytes, n2bytes; // int - var tmp; // int - - // Prepare sum. - sumScale = Libbcmath.MAX(n1.n_scale, n2.n_scale); - sumDigits = Libbcmath.MAX(n1.n_len, n2.n_len) + 1; - sum = Libbcmath.bc_new_num(sumDigits, Libbcmath.MAX(sumScale, scaleMin)); - - // Start with the fraction part. Initialize the pointers. - n1bytes = n1.n_scale; - n2bytes = n2.n_scale; - n1ptr = n1.n_len + n1bytes - 1; - n2ptr = n2.n_len + n2bytes - 1; - sumptr = sumScale + sumDigits - 1; - - // Add the fraction part. First copy the longer fraction - // (ie when adding 1.2345 to 1 we know .2345 is correct already) . - if (n1bytes !== n2bytes) { - if (n1bytes > n2bytes) { - // n1 has more dp then n2 - while (n1bytes > n2bytes) { - sum.n_value[sumptr--] = n1.n_value[n1ptr--]; - // *sumptr-- = *n1ptr--; - n1bytes--; - } - } else { - // n2 has more dp then n1 - while (n2bytes > n1bytes) { - sum.n_value[sumptr--] = n2.n_value[n2ptr--]; - // *sumptr-- = *n2ptr--; - n2bytes--; - } - } - } - - // Now add the remaining fraction part and equal size integer parts. - n1bytes += n1.n_len; - n2bytes += n2.n_len; - carry = 0; - while (n1bytes > 0 && n2bytes > 0) { - // add the two numbers together - tmp = n1.n_value[n1ptr--] + n2.n_value[n2ptr--] + carry; - // *sumptr = *n1ptr-- + *n2ptr-- + carry; - // check if they are >= 10 (impossible to be more then 18) - if (tmp >= Libbcmath.BASE) { - carry = 1; - tmp -= Libbcmath.BASE; // yep, subtract 10, add a carry - } else { - carry = 0; - } - sum.n_value[sumptr] = tmp; - sumptr--; - n1bytes--; - n2bytes--; - } - - // Now add carry the [rest of the] longer integer part. - if (n1bytes === 0) { - // n2 is a bigger number then n1 - while (n2bytes-- > 0) { - tmp = n2.n_value[n2ptr--] + carry; - // *sumptr = *n2ptr-- + carry; - if (tmp >= Libbcmath.BASE) { - carry = 1; - tmp -= Libbcmath.BASE; - } else { - carry = 0; - } - sum.n_value[sumptr--] = tmp; - } - } else { - // n1 is bigger then n2.. - while (n1bytes-- > 0) { - tmp = n1.n_value[n1ptr--] + carry; - // *sumptr = *n1ptr-- + carry; - if (tmp >= Libbcmath.BASE) { - carry = 1; - tmp -= Libbcmath.BASE; - } else { - carry = 0; - } - sum.n_value[sumptr--] = tmp; - } - } - - // Set final carry. - if (carry === 1) { - sum.n_value[sumptr] += 1; - // *sumptr += 1; - } - - // Adjust sum and return. - Libbcmath._bc_rm_leading_zeros(sum); - return sum; - }, - - /** - * Perform a subtraction - * - * Perform subtraction: N2 is subtracted from N1 and the value is - * returned. The signs of N1 and N2 are ignored. Also, N1 is - * assumed to be larger than N2. SCALE_MIN is the minimum scale - * of the result. - * - * Basic school maths says to subtract 2 numbers.. - * 1. make them the same length, the decimal places, and the integer part - * 2. start from the right and subtract the two numbers from each other - * 3. if the sum of the 2 numbers < 0, carry -1 to the next set and add 10 - * (ie 18 > carry 1 becomes 8). thus 0.9 + 0.9 = 1.8 - * - * @param {bc_num} n1 - * @param {bc_num} n2 - * @param {int} scaleMin - * @return bc_num - */ - _bc_do_sub: function _bc_do_sub(n1, n2, scaleMin) { - var diff; // bc_num - var diffScale, diffLen; // int - var minScale, minLen; // int - var n1ptr, n2ptr, diffptr; // int - var borrow, count, val; // int - // Allocate temporary storage. - diffLen = Libbcmath.MAX(n1.n_len, n2.n_len); - diffScale = Libbcmath.MAX(n1.n_scale, n2.n_scale); - minLen = Libbcmath.MIN(n1.n_len, n2.n_len); - minScale = Libbcmath.MIN(n1.n_scale, n2.n_scale); - diff = Libbcmath.bc_new_num(diffLen, Libbcmath.MAX(diffScale, scaleMin)); - - /* Not needed? - // Zero extra digits made by scaleMin. - if (scaleMin > diffScale) { - diffptr = (char *) (diff->n_value + diffLen + diffScale); - for (count = scaleMin - diffScale; count > 0; count--) { - *diffptr++ = 0; - } - } - */ - - // Initialize the subtract. - n1ptr = n1.n_len + n1.n_scale - 1; - n2ptr = n2.n_len + n2.n_scale - 1; - diffptr = diffLen + diffScale - 1; - - // Subtract the numbers. - borrow = 0; - - // Take care of the longer scaled number. - if (n1.n_scale !== minScale) { - // n1 has the longer scale - for (count = n1.n_scale - minScale; count > 0; count--) { - diff.n_value[diffptr--] = n1.n_value[n1ptr--]; - // *diffptr-- = *n1ptr--; - } - } else { - // n2 has the longer scale - for (count = n2.n_scale - minScale; count > 0; count--) { - val = 0 - n2.n_value[n2ptr--] - borrow; - // val = - *n2ptr-- - borrow; - if (val < 0) { - val += Libbcmath.BASE; - borrow = 1; - } else { - borrow = 0; - } - diff.n_value[diffptr--] = val; - //* diffptr-- = val; - } - } - - // Now do the equal length scale and integer parts. - for (count = 0; count < minLen + minScale; count++) { - val = n1.n_value[n1ptr--] - n2.n_value[n2ptr--] - borrow; - // val = *n1ptr-- - *n2ptr-- - borrow; - if (val < 0) { - val += Libbcmath.BASE; - borrow = 1; - } else { - borrow = 0; - } - diff.n_value[diffptr--] = val; - //* diffptr-- = val; - } - - // If n1 has more digits then n2, we now do that subtract. - if (diffLen !== minLen) { - for (count = diffLen - minLen; count > 0; count--) { - val = n1.n_value[n1ptr--] - borrow; - // val = *n1ptr-- - borrow; - if (val < 0) { - val += Libbcmath.BASE; - borrow = 1; - } else { - borrow = 0; - } - diff.n_value[diffptr--] = val; - } - } - - // Clean up and return. - Libbcmath._bc_rm_leading_zeros(diff); - return diff; - }, - - /** - * - * @param {int} length - * @param {int} scale - * @return bc_num - */ - bc_new_num: function bc_new_num(length, scale) { - var temp; // bc_num - temp = new Libbcmath.bc_num(); // eslint-disable-line new-cap - temp.n_sign = Libbcmath.PLUS; - temp.n_len = length; - temp.n_scale = scale; - temp.n_value = Libbcmath.safe_emalloc(1, length + scale, 0); - Libbcmath.memset(temp.n_value, 0, 0, length + scale); - return temp; - }, - - safe_emalloc: function safe_emalloc(size, len, extra) { - return Array(size * len + extra); - }, - - /** - * Create a new number - */ - bc_init_num: function bc_init_num() { - return new Libbcmath.bc_new_num(1, 0); // eslint-disable-line new-cap - }, - - _bc_rm_leading_zeros: function _bc_rm_leading_zeros(num) { - // We can move n_value to point to the first non zero digit! - while (num.n_value[0] === 0 && num.n_len > 1) { - num.n_value.shift(); - num.n_len--; - } - }, - - /** - * Convert to bc_num detecting scale - */ - php_str2num: function php_str2num(str) { - var p; - p = str.indexOf('.'); - if (p === -1) { - return Libbcmath.bc_str2num(str, 0); - } else { - return Libbcmath.bc_str2num(str, str.length - p); - } - }, - - CH_VAL: function CH_VAL(c) { - return c - '0'; // ?? - }, - - BCD_CHAR: function BCD_CHAR(d) { - return d + '0'; // ?? - }, - - isdigit: function isdigit(c) { - return isNaN(parseInt(c, 10)); - }, - - bc_str2num: function bc_str2num(strIn, scale) { - var str, num, ptr, digits, strscale, zeroInt, nptr; - // remove any non-expected characters - // Check for valid number and count digits. - - str = strIn.split(''); // convert to array - ptr = 0; // str - digits = 0; - strscale = 0; - zeroInt = false; - if (str[ptr] === '+' || str[ptr] === '-') { - ptr++; // Sign - } - while (str[ptr] === '0') { - ptr++; // Skip leading zeros. - } - // while (Libbcmath.isdigit(str[ptr])) { - while (str[ptr] % 1 === 0) { - // Libbcmath.isdigit(str[ptr])) { - ptr++; - digits++; // digits - } - - if (str[ptr] === '.') { - ptr++; // decimal point - } - // while (Libbcmath.isdigit(str[ptr])) { - while (str[ptr] % 1 === 0) { - // Libbcmath.isdigit(str[ptr])) { - ptr++; - strscale++; // digits - } - - if (str[ptr] || digits + strscale === 0) { - // invalid number, return 0 - return Libbcmath.bc_init_num(); - //* num = bc_copy_num (BCG(_zero_)); - } - - // Adjust numbers and allocate storage and initialize fields. - strscale = Libbcmath.MIN(strscale, scale); - if (digits === 0) { - zeroInt = true; - digits = 1; - } - - num = Libbcmath.bc_new_num(digits, strscale); - - // Build the whole number. - ptr = 0; // str - if (str[ptr] === '-') { - num.n_sign = Libbcmath.MINUS; - // (*num)->n_sign = MINUS; - ptr++; - } else { - num.n_sign = Libbcmath.PLUS; - // (*num)->n_sign = PLUS; - if (str[ptr] === '+') { - ptr++; - } - } - while (str[ptr] === '0') { - ptr++; // Skip leading zeros. - } - - nptr = 0; // (*num)->n_value; - if (zeroInt) { - num.n_value[nptr++] = 0; - digits = 0; - } - for (; digits > 0; digits--) { - num.n_value[nptr++] = Libbcmath.CH_VAL(str[ptr++]); - //* nptr++ = CH_VAL(*ptr++); - } - - // Build the fractional part. - if (strscale > 0) { - ptr++; // skip the decimal point! - for (; strscale > 0; strscale--) { - num.n_value[nptr++] = Libbcmath.CH_VAL(str[ptr++]); - } - } - - return num; - }, - - cint: function cint(v) { - if (typeof v === 'undefined') { - v = 0; - } - var x = parseInt(v, 10); - if (isNaN(x)) { - x = 0; - } - return x; - }, - - /** - * Basic min function - * @param {int} a - * @param {int} b - */ - MIN: function MIN(a, b) { - return a > b ? b : a; - }, - - /** - * Basic max function - * @param {int} a - * @param {int} b - */ - MAX: function MAX(a, b) { - return a > b ? a : b; - }, - - /** - * Basic odd function - * @param {int} a - */ - ODD: function ODD(a) { - return a & 1; - }, - - /** - * replicate c function - * @param {array} r return (by reference) - * @param {int} ptr - * @param {string} chr char to fill - * @param {int} len length to fill - */ - memset: function memset(r, ptr, chr, len) { - var i; - for (i = 0; i < len; i++) { - r[ptr + i] = chr; - } - }, - - /** - * Replacement c function - * Obviously can't work like c does, so we've added an "offset" - * param so you could do memcpy(dest+1, src, len) as memcpy(dest, 1, src, len) - * Also only works on arrays - */ - memcpy: function memcpy(dest, ptr, src, srcptr, len) { - var i; - for (i = 0; i < len; i++) { - dest[ptr + i] = src[srcptr + i]; - } - return true; - }, - - /** - * Determine if the number specified is zero or not - * @param {bc_num} num number to check - * @return boolean true when zero, false when not zero. - */ - bc_is_zero: function bc_is_zero(num) { - var count; // int - var nptr; // int - // Quick check. - // if (num === BCG(_zero_)) return TRUE; - // Initialize - count = num.n_len + num.n_scale; - nptr = 0; // num->n_value; - // The check - while (count > 0 && num.n_value[nptr++] === 0) { - count--; - } - - if (count !== 0) { - return false; - } else { - return true; - } - }, - - bc_out_of_memory: function bc_out_of_memory() { - throw new Error('(BC) Out of memory'); - } - }; - return Libbcmath; -}; -//# sourceMappingURL=_bc.js.map
\ No newline at end of file |