1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
import argparse
import sys
from scripts.utils.configuration import Configuration
from scripts import training
from data.datasets.CLEVRER.dataset import ClevrerDataset, ClevrerSample, RamImage
from data.datasets.ADEPT.dataset import AdeptDataset
from data.datasets.BOUNCINGBALLS.dataset import BouncingBallDataset
from scripts import evaluation_adept, evaluation_clevrer, evaluation_bb
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-cfg", default="", help='path to the configuration file')
parser.add_argument("-n", default=-1, type=int, help='optional run number')
parser.add_argument("-load", default="", type=str, help='path to pretrained model or checkpoint')
# Load configuration
args = parser.parse_args(sys.argv[1:])
cfg = Configuration(args.cfg)
cfg.model_path = f"{cfg.model_path}"
if args.n >= 0:
cfg.model_path = f"{cfg.model_path}.run{args.n}"
print(f'Training model {cfg.model_path}')
# Load dataset
size = (cfg.model.latent_size[1] * 2**(cfg.model.level*2), cfg.model.latent_size[0] * 2**(cfg.model.level*2))
if cfg.datatype == "clevrer":
trainset = ClevrerDataset("./", cfg.dataset, "train", size, use_slotformer=False)
valset = ClevrerDataset("./", cfg.dataset, "val", size, use_slotformer=True)
elif cfg.datatype == "adept":
trainset = AdeptDataset("./", cfg.dataset, "train", size)
valset = AdeptDataset("./", cfg.dataset, "test", size)
valset.train = True
elif cfg.datatype == "bouncingballs":
trainset = BouncingBallDataset("./", cfg.dataset, "train", size, type_name = cfg.scenario)
valset = BouncingBallDataset("./", cfg.dataset, "val", size, type_name = cfg.scenario)
else:
raise Exception("Dataset not supported")
# Final call
training.train_loci(cfg, trainset, valset, args.load)
|