1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
import pandas as pd
import warnings
import os
import argparse
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.options.mode.chained_assignment = None
def eval_adept(path):
net = 'net1'
# read pickle file
tf = pd.DataFrame()
sf = pd.DataFrame()
af = pd.DataFrame()
with open(os.path.join(path, 'trialframe.csv'), 'rb') as f:
tf_temp = pd.read_csv(f, index_col=0)
tf_temp['net'] = net
tf = pd.concat([tf,tf_temp])
with open(os.path.join(path, 'slotframe.csv'), 'rb') as f:
sf_temp = pd.read_csv(f, index_col=0)
sf_temp['net'] = net
sf = pd.concat([sf,sf_temp])
with open(os.path.join(path, 'accframe.csv'), 'rb') as f:
af_temp = pd.read_csv(f, index_col=0)
af_temp['net'] = net
af = pd.concat([af,af_temp])
# cast variables
sf['visible'] = sf['visible'].astype(bool)
sf['bound'] = sf['bound'].astype(bool)
sf['occluder'] = sf['occluder'].astype(bool)
sf['inimage'] = sf['inimage'].astype(bool)
sf['vanishing'] = sf['vanishing'].astype(bool)
sf['alpha_pos'] = 1-sf['alpha_pos']
sf['alpha_ges'] = 1-sf['alpha_ges']
# scale to percentage
sf['TE'] = sf['TE'] * 100
# add surprise as dummy code
tf['control'] = [('control' in set) for set in tf['set']]
sf['control'] = [('control' in set) for set in sf['set']]
# STATS:
tracking_error_visible = 0
tracking_error_occluded = 0
num_positive_trackings = 0
mota = 0
gate_openings_visible = 0
gate_openings_occluded = 0
print('Tracking Error ------------------------------')
grouping = (sf.inimage & sf.bound & ~sf.occluder & sf.control)
def get_stats(col):
return f' M: {col.mean():.3} , STD: {col.std():.3}, Count: {col.count()}'
# When Visible
temp = sf[grouping & sf.visible]
print(f'Tracking Error when visible:' + get_stats(temp['TE']))
tracking_error_visible = temp['TE'].mean()
# When Occluded
temp = sf[grouping & ~sf.visible]
print(f'Tracking Error when occluded:' + get_stats(temp['TE']))
tracking_error_occluded = temp['TE'].mean()
print('Positive Trackings ------------------------------')
# succesfull trackings: In the last visible moment of the target, the slot was less than 10% away from the target
# determine last visible frame numeric
grouping_factors = ['net','set','evalmode','scene','slot']
ff = sf[sf.visible & sf.bound & sf.inimage].groupby(grouping_factors).max()
ff.rename(columns = {'frame':'last_visible'}, inplace = True)
sf = sf.merge(ff[['last_visible']], on=grouping_factors, how='left')
# same for first bound frame
ff = sf[sf.visible & sf.bound & sf.inimage].groupby(grouping_factors).min()
ff.rename(columns = {'frame':'first_visible'}, inplace = True)
sf = sf.merge(ff[['first_visible']], on=grouping_factors, how='left')
# add dummy variable to sf
sf['last_visible'] = (sf['last_visible'] == sf['frame'])
# extract the trials where the target was last visible and threshold the TE
ff = sf[sf['last_visible']]
ff['tracked_pos'] = (ff['TE'] < 10)
ff['tracked_neg'] = (ff['TE'] >= 10)
# fill NaN with 0
sf = sf.merge(ff[grouping_factors + ['tracked_pos', 'tracked_neg']], on=grouping_factors, how='left')
sf['tracked_pos'].fillna(False, inplace=True)
sf['tracked_neg'].fillna(False, inplace=True)
# Aggreagte over all scenes
temp = sf[(sf['frame']== 1) & ~sf.occluder & sf.control & (sf.first_visible < 20)]
temp = temp.groupby(['set', 'evalmode']).sum()
temp = temp[['tracked_pos', 'tracked_neg']]
temp = temp.reset_index()
temp['tracked_pos_pro'] = temp['tracked_pos'] / (temp['tracked_pos'] + temp['tracked_neg'])
temp['tracked_neg_pro'] = temp['tracked_neg'] / (temp['tracked_pos'] + temp['tracked_neg'])
print(temp)
num_positive_trackings = temp['tracked_pos_pro']
print('Mostly Trecked /MOTA ------------------------------')
temp = af[af.index == 'OVERALL']
temp['mostly_tracked'] = temp['mostly_tracked'] / temp['num_unique_objects']
temp['partially_tracked'] = temp['partially_tracked'] / temp['num_unique_objects']
temp['mostly_lost'] = temp['mostly_lost'] / temp['num_unique_objects']
print(temp)
mota = temp['mota']
print('Openings ------------------------------')
grouping = (sf.inimage & sf.bound & ~sf.occluder & sf.control)
temp = sf[grouping & sf.visible]
print(f'Percept gate openings when visible:' + get_stats(temp['alpha_pos'] + temp['alpha_ges']))
gate_openings_visible = temp['alpha_pos'].mean() + temp['alpha_ges'].mean()
temp = sf[grouping & ~sf.visible]
print(f'Percept gate openings when occluded:' + get_stats(temp['alpha_pos'] + temp['alpha_ges']))
gate_openings_occluded = temp['alpha_pos'].mean() + temp['alpha_ges'].mean()
print('------------------------------------------------')
print('------------------------------------------------')
str = ''
str += f'net: {net}\n'
str += f'Tracking Error when visible: {tracking_error_visible:.3}\n'
str += f'Tracking Error when occluded: {tracking_error_occluded:.3}\n'
str += 'Positive Trackings: ' + ', '.join(f'{val:.3}' for val in num_positive_trackings) + '\n'
str += 'MOTA: ' + ', '.join(f'{val:.3}' for val in mota) + '\n'
str += f'Percept gate openings when visible: {gate_openings_visible:.3}\n'
str += f'Percept gate openings when occluded: {gate_openings_occluded:.3}\n'
print(str)
# write tstring to file
with open(os.path.join(path, 'results.txt'), 'w') as f:
f.write(str)
if __name__ == "__main__":
# use argparse to get the path to the results folder
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, default='')
args = parser.parse_args()
# setting path to results folder
path = args.path
eval_adept(path)
|